If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+120x+432=0
a = 8; b = 120; c = +432;
Δ = b2-4ac
Δ = 1202-4·8·432
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-24}{2*8}=\frac{-144}{16} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+24}{2*8}=\frac{-96}{16} =-6 $
| 10x+9=6x-25 | | 11x+95=700 | | 3x+5-7=2(x+4) | | 95x+11=700 | | 0=3x+15=42 | | 7x-8+7x-1+5x-2=180 | | 10x+9=6x+25-9= | | 3(2x+4)=10x+12-4x | | –3h+–3–8h+–8h+–5h=0 | | 8.25x+230=419.75 | | –3h+–3–8h+–8h+–5h= | | 2x+3(18.50)=104.50= | | 59x+18=275 | | 3a+8=60 | | 14.50x+20=12.50x+28 | | 18x+59=275 | | 4b+b+17+3b-5=180 | | 99x+279=705 | | 7(3x+3)=3(7x+2) | | -4=-2÷9y | | 3.99x+15=35.75 | | −12=13(18+2y) | | 1/2(4r+12)=r-7 | | 203=x-9 | | 15x+3.99=35.75 | | 5(5x+9)+(x+7)=13 | | 3(n+5)-10=-2(n+10) | | 2(x-10)+2x=6+4x | | 9/4x+6)=-(5/4x-24) | | 11y+y^2=126 | | 4(7x+2)=2(3x+4) | | -11-3p=1+7p-6p |